Why Business Anthropologists Should Reconsider Machine Learning

Stephen Paff
3 min readNov 22, 2019

Photo by Alex Knight on Pexels.com

(You can find original publication here: https://ethno-data.com/why-business-anthropologists-should-reconsider-machine-learning/. Feel free to check out the rest of the articles at: http://ethno-data.com /.)

In my experience on both “sides,” I have seen a tendency among anthropologists to lump all quantitative social research as proscriptive and top-down and thus miss the important subtleties within data science and other quantitative techniques. Machine learning techniques within the field are a partial shift towards bottom-up, situational and iterative quantitative analysis, and business anthropologists should explore what data scientists do as a chance to redevelop their relationship with quantitative analysis.

Shifts in Machine Learning

Shifts within machine learning algorithm development give impetus for incorporating quantitative techniques that are local and interpretive. The debate between top-down vs. bottom-up knowledge production does not need — or at least may no longer need- to divide quantitative and qualitative techniques. Machine learning algorithms “leave open the possibility of situated knowledge production, entangled with narrative,” a clear parallel to qualitative ethnographic techniques.[ii]

At the same time, this shift towards iterative and flexible machine learning techniques is not total within data science: aspects of top-down frameworks remain, in terms of personnel, objectives, habits, strategies, and evaluation criteria. But, seeds of bottom-up thinking definitely exist prominently within data science, with the potential to significantly reshape data science and possibly quantitative analysis in general.

As a discipline, data science is in a uniquely formative and adolescent period, developing into its “standard” practices. This leads to significant fluctuations as the data scientist community defines its methodology. The set of standard practices that we now typically call “traditional” or “standard” statistics, generally taught in introductory statistics courses, developed over a several decade period in the late nineteenth and early twentieth century, especially in Britain.[iii] Connected with recent computer technology, data science is in a similarly formative period right now — developing its standard techniques and ways of thinking. This formative period is a strategic time for anthropologists to encourage bottom-up quantative techniques.

Conclusion

Business anthropologists could and should be instrumental in helping to develop and innovatively utilize these situational and iterative machine learning techniques. This is a strategic time for business anthropologists to do the following:

  1. Immerse themselves into data science and encourage and cultivate bottom-up quantative machine learning techniques within data science
  2. Cultivate and incorporate (when applicable) situational and iterative machine learning approaches in its ethnographies

For both, anthropologists should use the strengths of ethnographic and anthropological thinking to help develop bottom-up machine learning that is grounded in flexible to specific local contexts. Each requires business anthropologists to reexplore their relationship with data science and machine learning instead of treating it as part of an opposing “methodological clan.” [iv]

[i] Nafus, D., & Knox, H. (2018). Ethnography for a Data-Saturated World. Manchester: Manchester University Press, 11–12

[ii] Ibid, 15–17.

[iii] Mackenzie, D. (1981). Statistics in Britain 1865–1930: The Social Construction of Scientific Knowledge. Edinburgh: Edinburgh University Press.

[iv] Seaver, N. (2015). Bastard Algebra. In T. Boellstorff, & B. Maurer, Data, Now Bigger and Better (pp. 27–46). Chicago: Prickly Paradigm Press, 39.

Originally published at https://ethno-data.com on November 22, 2019.

--

--

Stephen Paff

I am a data scientist and ethnographer passionate about integrating of these two fields in professional settings. For more details, see https://ethno-data.com.